Appendix: Can Sticky Quantities Explain Export Insensitivity to Exchange Rates?

Contents

A	Firm responses: robustness	4
В	Derivation of elasticities	ç
	B.1 Model without customer base	. 6
	B.2 Endogenous customer base	. 11
	B.3 Iceberg trade costs depend on real exchange rates	. 12
	B.4 Additive distribution / trade costs	. 12
\mathbf{C}	Price elasticity of demand estimates based on delta method	15
D	Additional quantitative results	16
	D.1 Macro shocks: robustness on ϕ	. 16
	D.2 Macro shocks: robustness on ρ	. 18
	D.3 Macro shocks: robustness on α	. 19
	D.4 Macro shocks: robustness on δ	. 21
	D.5 Tariff shocks: robustness on ϕ	. 22
	D.6 Tariff shocks: robustness on α	. 23
	D.7 Tariff shocks: robustness on δ	25

List of Tables

1 Revenue, price and quantity sensitivity to macro shocks and tariffs: es						
	in differences					
2	Revenue, price and quantity sensitivity to macro shocks: no interaction with					
	spell length					
3	Revenue, price and quantity sensitivity to macro shocks: no interaction with					
	spell length, no trajectories					
4	Quantity sensitivity to macro shocks: Firm size					
5	Price sensitivity to macro shocks: Firm size					
6	Implied price elasticity of demand: Firm size					
7	Quantity sensitivity to macro shocks: Ownership					
8	Price sensitivity to macro shocks: Ownership					
9	Implied price elasticity of demand: Ownership					
10	Quantity sensitivity to macro shocks: Industry					
11	Price sensitivity to macro shocks: Industry					
12	Implied price elasticity of demand: Sector					
13	Sensitivity to macro shocks: Split exchange rate in nominal and price parts .					
14	Price elasticity of demand using Delta method					
List	of Figures					
1	Revenue elasticities and ϕ					
2	Quantity elasticities and ϕ					
3	Price elasticities and ϕ					
4	Revenue elasticities and ρ					
5	Quantity elasticities and ρ					
6	Price elasticities and ρ					
7	Revenue elasticities and α					
8	Quantity elasticities and α					
9	Price elasticities and α					
10	Revenue elasticities and δ					
11	Quantity elasticities and δ					
12	Price elasticities and δ					
13	Elasticities with respect to tariffs and ϕ					

14	Elasticities with respect to tariffs and α	23
15	Elasticities with respect to tariffs and δ	23

A Firm responses: robustness

Table 1: Revenue, price and quantity sensitivity to macro shocks and tariffs: estimation in

differences

	(1)		(2)		(3)		
		$\Delta \ln$	Revenue	$\Delta \ln \theta$	Quantity	$\Delta \ln \text{ Price}$	
		coeff	s.e.	coeff	s.e.	coeff	s.e.
	rer_t^k	0.46	(0.17)**	0.06	(0.17)	0.37	(0.09)**
Low exit prob	dem_t^k	1.05	(0.41)**	1.03	(0.44)**	-0.17	(0.23)
	$ au_t^{jk}$	-0.65	(1.80)	-0.63	(1.69)	-0.49	(0.93)
	rer_t^k	0.13	(0.20)	0.09	(0.20)	0.03	(0.11)
High exit prob	dem_t^k	1.16	(0.44)**	1.27	(0.44)**	-0.36	(0.24)
	$ au_t^{jk}$	0.23	(1.64)	0.46	(1.79)	-0.53	(1.13)
Export history of	controls	yes		yes		yes	
Firm-product-ye	ear f.e.	yes		yes		yes	
Product-market f.e.		no		no		no	
N		11	1,966	111,691		111,691	
\mathbb{R}^2		0.38		0.39		0.36	
R^2 -adj		0.23		0.24		0.20	

Notes: Estimation method is OLS. Dependent variable is in turn change in log Euro revenue, log tonnes and log unit value at the level of the firm-product-market. Robust standard errors are calculated. ** indicates significance at the 5% level. * indicates significance at the 10% level.

Table 2: Revenue, price and quantity sensitivity to macro shocks: no interaction with spell length

	(1)		(2)		(3)	
	Re	evenue	Qυ	Quantity		Price
	coeff	s.e.	coeff	s.e.	coeff	s.e.
rer_t^k	0.51	(0.09)**	0.34	(0.09)**	0.17	(0.04)**
dem_t^k	0.81	(0.15)**	0.83	(0.15)**	-0.02	(0.07)
$ au_t^{jk}$	0.07	(0.68)	-0.01	(0.69)	0.08	(0.37)
Export history controls	yes		yes		yes	
Firm-product-year f.e.		yes	yes		yes	
Product-market f.e.	yes		yes		yes	
N	180,434		180,434		180,434	
\mathbb{R}^2	0.77		0.83		0.91	
R^2 -adj		0.68	0.76		0.87	

Notes: Estimation method is OLS. Dependent variable is in turn log Euro revenue, log tonnes and log unit value at the level of the firm-product-market. Robust standard errors are calculated. ** indicates significance at the 5% level. * indicates significance at the 10% level.

Table 3: Revenue, price and quantity sensitivity to macro shocks: no interaction with spell length, no trajectories

	(1)		(2)		(3)	
	Re	evenue	Quantity		Price	
	coeff	s.e.	coeff	s.e.	coeff	s.e.
rer_t^k	0.59	(0.09)**	0.42	(0.09)**	0.17	(0.04)**
dem_t^k	0.94	(0.15)**	0.95	(0.16)**	-0.01	(0.07)
$ au_t^{jk}$	0.10	(0.69)	0.01	(0.71)	0.09	(0.37)
Export history controls		no	no		no	
Firm-product-year f.e.		yes	yes		yes	
Product-market f.e.		yes	yes		yes	
N	180,434		180,434		180,434	
\mathbb{R}^2	0.75		0.82		0.91	
R ² -adj		0.66	0.75		0.87	

Notes: Estimation method is OLS. Dependent variable is in turn log Euro revenue, log tonnes and log unit value at the level of the firm-product-market. Robust standard errors are calculated. ** indicates significance at the 5% level. * indicates significance at the 10% level.

Table 4: Quantity sensitivity to macro shocks: Firm size

1 abic 1. Quality scriptority to macro shocks. I imi size							
		(1)		(2)		(3)	
		Sn	nall	Me	edium	Large	
		coeff	s.e.	coeff	s.e.	coeff	s.e.
	rer_t^k	0.18	(0.14)	0.39	(0.20)*	0.42	(0.16)**
Low exit prob	dem_t^k	0.40	(0.25)	0.89	(0.34)**	1.32	(0.26)**
	$ au_t^{jk}$	0.51	(1.66)	-4.92	(1.84)**	-3.74	(1.39)**
	rer_t^k	0.15	(0.14)	0.39	(0.20)*	0.39	(0.16)*
High exit prob	dem_t^k	0.34	(0.25)	0.77	(0.34)**	1.24	(0.25)**
	$ au_t^{jk}$	2.11	(1.29)	0.00	(1.61)	1.13	(1.24)
Export history of	controls	yes		yes		yes	
Firm-product-ye	ear f.e.	yes		yes		yes	
Product-market	f.e.	yes		yes		yes	
N		68	,989	42,610		59,847	
\mathbb{R}^2		0.86		0.85		0.82	
R^2 -adj		0.79		0.78		0.75	

Notes: Small: <100 employees. Medium: 100-249 employees. Large: 250+ employees. Estimation method is OLS. Dependent variable is log tonnes at the level of the firm-product-market. Robust standard errors are calculated. ** indicates significance at the 5% level. * indicates significance at the 10% level.

Table 5: Price sensitivity to macro shocks: Firm size

		(1)		(2)		(3)	
		Small		Medium		Large	
		coeff	s.e.	coeff	s.e.	coeff	s.e.
	rer_t^k	0.13	(0.07)*	0.24	(0.09)**	0.17	(0.08)**
Low exit prob	dem_t^k	0.18	(0.12)	0.07	(0.16)	-0.19	(0.14)
	$ au_t^{jk}$	0.54	(0.91)	-0.07	(0.80)	-0.12	(0.67)
	rer_t^k	0.14	(0.07)*	0.24	(0.09)**	0.15	(0.08)**
High exit prob	dem_t^k	0.18	(0.12)	0.08	(0.16)	-0.19	(0.14)
	$ au_t^{jk}$	0.46	(0.70)	1.05	(0.84)	-0.93	(0.64)
Export history of	controls	yes		yes		yes	
Firm-product-ye	ar f.e.	yes		yes		yes	
Product-market f.e.		yes		yes		yes	
N		68,989		42,610		59,847	
\mathbb{R}^2		0.93		0.93		0.89	
R ² -adj		0.89		0.90		0.85	

Notes: Small: <100 employees. Medium: 100-249 employees. Large: 250+ employees. Estimation method is OLS. Dependent variable is log unit value at the level of the firm-product-market. Robust standard errors are calculated. ** indicates significance at the 5% level. * indicates significance at the 10% level.

Table 6: Implied price elasticity of demand: Firm size

	Small	Medium	Large
rer_t^k	0.21	0.51	0.49
$ au_t^{jk}$	-1.11	4.60	3.34

Table 7: Quantity sensitivity to macro shocks: Ownership

		(1)		(2)	
		Domestic		Foreign	
		coeff	s.e.	coeff	s.e.
	rer_t^k	0.05	(0.14)	0.46	(0.12)**
Low exit prob	dem_t^k	0.29	(0.27)	1.02	(0.18)**
	$ au_t^{jk}$	0.51	(1.62)	-2.76	(0.97)**
	rer_t^k	0.04	(0.14)	0.44	(0.12)**
High exit prob	dem_t^k	0.22	(0.27)	0.94	(0.18)**
	$ au_t^{jk}$	3.20	(1.55)**	1.42	(0.87)
Export history of	$_{ m controls}$	yes		yes	
Firm-product-ye	ear f.e.	yes		yes	
Product-market f.e.		yes		yes	
N		67,623		107,287	
\mathbb{R}^2	\mathbb{R}^2		0.88		0.80
R ² -adj	R^2 -adj		0.82		0.73

Notes: Estimation method is OLS. Dependent variable is log tonnes at the level of the firm-product-market. Robust standard errors are calculated. ** indicates significance at the 5% level. * indicates significance at the 10% level.

Table 8: Price sensitivity to macro shocks: Ownership

		(1)		(2)	
		Domestic		Foreign	
		coeff	s.e.	coeff	s.e.
	rer_t^k	0.26	(0.06)**	0.16	(0.06)**
Low exit prob	dem_t^k	0.21	(0.12)*	-0.07	(0.09)
	$ au_t^{jk}$	-0.37	(0.88)	-0.01	(0.48)
	rer_t^k	0.27	(0.06)**	0.15	(0.06)**
High exit prob	dem_t^k	0.22	(0.12)*	-0.08	(0.069)
	$ au_t^{jk}$	-0.01	(0.77)	-0.08	(0.47)
Export history of	controls	yes		yes	
Firm-product-ye	ear f.e.	yes		yes	
Product-market f.e.		yes		yes	
N		67,623		107,287	
\mathbb{R}^2	0.94		0.87		
R ² -adj		(0.91	0.82	

Notes: Estimation method is OLS. Dependent variable is log unit value at the level of the firm-product-market. Robust standard errors are calculated. ** indicates significance at the 5% level. * indicates significance at the 10% level.

Table 9: Implied price elasticity of demand: Ownership

θ_t^{ik}	Domestic	Foreign
rer_t^k	0.07	0.55
$ au_t^{jk}$	-0.81	2.79

Table 10: Quantity sensitivity to macro shocks: Industry

Table 10. Quality sensitivity to macro shocks. Industry											
		(1)		(2)		(3)		(4)		(5)	
		Cons food		Cons nonf nondur		Cons durables		Intermediates		Capital goods	
		coeff	s.e.	coeff	s.e.	coeff	s.e.	coeff	s.e.	coeff	s.e.
	rer_t^k	-0.16	(0.19)	0.59	(0.24)**	-0.10	(0.76)	0.31	(0.18)*	0.48	(0.15)**
Low exit prob	dem_t^k	0.22	(0.38)	0.24	(0.42)	2.61	(1.43)*	0.82	(0.29)**	0.97	(0.24)**
	$ au_t^{jk}$	-0.60	(1.60)	-5.68	(2.13)**	-2.68	(6.34)	-1.87	(1.56)	-2.92	(1.86)
	rer_t^k	-0.14	(0.19)	0.57	(0.24)**	-0.25	(0.76)	0.29	(0.18)	0.45	(0.15)**
High exit prob	dem_t^k	0.20	(0.38)	0.12	(0.41)	2.51	(1.44)*	0.70	(0.30)**	0.91	(0.24)**
	$ au_t^{jk}$	0.76	(1.39)	-1.88	(1.78)	4.03	(5.67)	2.68	(1.43)*	1.70	(1.30)
Export history of	Export history controls		es	yes		yes		yes		yes	
Firm-product-year f.e.		У	es	yes		yes		yes		yes	
Product-market f.e.		у	yes yes		yes	yes		yes		yes	
N		35,	850	23,986		5,034		45,208		63,938	
\mathbb{R}^2		0.	0.78		0.80	0.83		0.85		0.78	
R^2 -adj		0.	67	0.73		0.72		0.78		0.70	

Notes: Estimation method is OLS. Dependent variable is log tonnes at the level of the firm-product-market. Robust standard errors are calculated. ** indicates significance at the 5% level. * indicates significance at the 10% level.

Table 11: Price sensitivity to macro shocks: Industry

(1)			(2) (3)		3)	(4)		(5)			
		Cons food		Cons nonf nondur		Cons durables		Intermediates		Capital goods	
			s.e.	coeff	s.e.	coeff	s.e.	coeff	s.e.	coeff	s.e.
	rer_t^k	0.19	(0.06)**	0.05	(0.14)	0.16	(0.30)	0.32	(0.09)**	0.12	(0.07)**
Low exit prob	dem_t^k	-0.14	(0.11)	0.21	(0.23)	0.30	(0.54)	0.22	(0.17)	-0.11	(0.12)
	$ au_t^{jk}$	0.26	(0.63)	1.97	(1.54)	2.35	(2.47)	-0.55	(0.82)	-0.16	(0.68)
	rer_t^k	0.20	(0.06)**	0.05	(0.14)	0.18	(0.30)	0.31	(0.09)**	0.12	(0.07)*
High exit prob	dem_t^k	-0.12	(0.11)	0.21	(0.24)	0.32	(0.54)	0.20	(0.17)	-0.10	(0.12)
	$ au_t^{jk}$	0.38	(0.96)	0.82	(1.27)	-0.49	(1.96)	-0.25	(0.78)	0.27	(0.60)
Export history of	Export history controls		yes		yes	У	res		yes		yes
Firm-product-year f.e.		yes		yes		yes		yes		yes	
Product-market f.e.		yes		yes		yes		yes		yes	
N		35,850		23,986		5,034		45,208		63,938	
\mathbb{R}^2		0.89		0.81		0.86		0.92		0.85	
R ² -adj		(0.84	0.74		0.76		0.88		0.80	

Notes: Estimation method is OLS. Dependent variable is log tonnes at the level of the firm-product-market. Robust standard errors are calculated. ** indicates significance at the 5% level. * indicates significance at the 10% level.

Table 12: Implied price elasticity of demand: Sector

$ heta_t^{ik}$	(1)	(2)	(3)	(4)	(5)
rer_t^k	-0.20	0.62	-0.12	0.46	0.55
$ au_t^{jk}$	0.48	1.91	0.80	4.16	3.48

Table 13: Sensitivity to macro shocks: Split exchange rate in nominal and price parts

		(1)			(2)	(3)	
		Re	evenue	Qu	antity	Price	
		coeff	s.e.	coeff	s.e.	coeff	s.e.
	x_t^k	0.58	(0.09)**	0.35	(0.09)**	0.23	(0.05)**
Low orit prob	p_t^k	0.65	(0.10)**	0.55	(0.10)**	0.10	(0.05)**
Low exit prob	dem_t^k	0.91	(0.15)**	0.88	(0.15)**	0.03	(0.08)*
	$ au_t^{jk}$	-2.30	(0.78)**	-2.31	(0.83)**	0.01	(0.42)
	x_t^k	0.55	(0.09)**	0.32	(0.09)**	0.23	(0.05)**
High exit prob	p_t^k	0.23	(0.11)**	0.09	(0.11)	0.14	(0.06)**
	dem_t^k	0.83	(0.15)**	0.80	(0.15)**	0.03	(0.08)
	$ au_t^{jk}$	1.22	(0.72)	1.09	(0.72)	0.13	(0.39)
Export history controls		yes		yes		yes	
Firm-product-ye	yes		yes		yes		
Product-market	yes		yes		yes		
N	180,434		180,434		180,434		
\mathbb{R}^2	0.77		0.83		0.91		
R^2 -adj	0.68		0.76		0.87		

Notes: Estimation method is OLS. Dependent variable is log unit value at the level of the firm-product-market. Robust standard errors are calculated. ** indicates significance at the 5% level. * indicates significance at the 10% level.

B Derivation of elasticities

B.1 Model without customer base

Let P_t^{ik*} be the consumer price of firm i's good in market k at time t. Demand is given by:

$$Q_t^{ik} = Q_t^k d\left(\frac{P_t^{ik*}}{P_t^{k*}}\right) \Phi_t^{ik}$$

so

$$\exp\left(\ln Q_t^{ik}\right) = Q_t^k d\left(\frac{\exp\left(\ln P_t^{ik*}\right)}{P_t^{k*}}\right) \Phi_t^{ik}$$

Therefore

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln P_t^{ik*}} Q_t^{ik} = Q_t^k d' \left(\frac{\exp\left(\ln P_t^{ik*}\right)}{P_t^{k*}} \right) \Phi_t^{ik} \frac{P_t^{ik*}}{P_t^{k*}}$$

So the price elasticity of demand is given by:

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln P_t^{ik*}} = \frac{Q_t^k d' \left(\frac{P_t^{ik*}}{P_t^{k*}}\right) \Phi_t^{ik} \frac{P_t^{ik*}}{P_t^{k*}}}{Q_t^{ik}} = \frac{d' \left(\frac{P_t^{ik*}}{P_t^{k*}}\right) \frac{P_t^{ik*}}{P_t^{k*}}}{d \left(\frac{P_t^{ik*}}{P_t^{k*}}\right)} = \theta_t^{ik}$$

Now normalize $P_t = 1$ so that the real exchange rate is $RER_t^k = \frac{E_t^k P_t^{k*}}{P_t} = E_t^k P_t^{k*}$. Then we can write:

$$\begin{split} Q_t^{ik} &= Q_t^k d\left(\frac{P_t^{ik*}}{P_t^{k*}}\right) \Phi_t^{ik} = Q_t^k d\left(\frac{\left(1 + T_t^{ik}\right) B^k P_t^{ik} / E_t^k}{P_t^{k*}}\right) \Phi_t^{ik} \\ Q_t^{ik} &= Q_t^k d\left(\frac{\left(1 + T_t^{ik}\right) B^k P_t^{ik}}{RER_t^k}\right) \Phi_t^{ik} = Q_t^k d\left(\frac{\left(1 + T_t^{ik}\right) B^k \mu_t^{ik} C_t^i}{RER_t^k}\right) \Phi_t^{ik} \end{split}$$

where μ_t^{ik} may depend on RER_t^k and T_t^{ik} . For the moment, Φ_t^{ik} and B^k are assumed independent of the real exchange rate and tariffs. Potential dependence of Q_t^k and C_t^i on the real exchange rate and tariffs is suppressed, since we explicitly control for these variables in our regressions. Rewrite the above expression:

$$\exp\left(\ln Q_t^{ik}\right) = Q_t^k d\left(\frac{\exp\left(\ln\left(1 + T_t^{ik}\right)\right) B^k \exp\left(\ln\mu_t^{ik}\right) C_t^i}{\exp\left(\ln RER_t^k\right)}\right) \Phi_t^{ik}$$

Then

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln RER_t^k}Q_t^{ik} = Q_t^k d' \left(\frac{P_t^{ik*}}{P_t^{k*}}\right) \Phi_t^{ik} \frac{P_t^{ik*}}{P_t^{k*}} \left(\frac{\partial \ln \mu_t^{ik}}{\partial \ln RER_t^k} - 1\right)$$

SO

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln RER_t^k} = \frac{Q_t^k d' \left(\frac{P_t^{ik*}}{P_t^{k*}}\right) \Phi_t^{ik} \frac{P_t^{ik*}}{P_t^{k*}}}{Q_t^{ik}} \left(\frac{\partial \ln \mu_t^{ik}}{\partial \ln RER_t^k} - 1\right)$$

and

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln RER_t^k} = \frac{d'\left(\frac{P_t^{ik*}}{P_t^{k*}}\right)\frac{P_t^{ik*}}{P_t^{k*}}}{d\left(\frac{P_t^{ik*}}{P_t^{k*}}\right)} \left(\frac{\partial \ln \mu_t^{ik}}{\partial \ln RER_t^k} - 1\right)$$

Substituting in for the price elasticity of demand we get:

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln RER_t^k} = \theta_t^{ik} \left(\frac{\partial \ln \mu_t^{ik}}{\partial \ln RER_t^k} - 1 \right)$$

Let

$$\eta_{Q,RER} = \frac{\partial \ln Q_t^{ik}}{\partial \ln RER_t^k}$$

and

$$\eta_{\mu,RER} = \frac{\partial \ln \mu_t^{ik}}{\partial \ln RER_t^k}$$

SO

$$\eta_{Q,RER} = \theta_t^{ik} \left(\eta_{\mu,RER} - 1 \right)$$

Similarly

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)} Q_t^{ik} = Q_t^k d' \left(\frac{P_t^{ik*}}{P_t^{k*}}\right) \Phi_t^{ik} \frac{P_t^{ik*}}{P_t^{k*}} \left(1 + \frac{\partial \ln \mu_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}\right)$$

SO

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)} = \frac{Q_t^k d' \left(\frac{P_t^{ik*}}{P_t^{k*}}\right) \Phi_t^{ik} \frac{P_t^{ik*}}{P_t^{k*}}}{Q_t^{ik}} \left(1 + \frac{\partial \ln \mu_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}\right)$$

and

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)} = \theta_t^{ik} \left(1 + \frac{\partial \ln \mu_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}\right)$$

Let

$$\eta_{Q,1+T} = \frac{\partial \ln Q_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}$$

and

$$\eta_{\mu,1+T} = \frac{\partial \ln \mu_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}$$

SO

$$\eta_{Q,1+T} = \theta_t^{ik} \left(1 + \eta_{\mu,1+T} \right)$$

B.2 Endogenous customer base

As before assume that demand is

$$Q_t^{ik} = Q_t^k d\left(\frac{\left(1 + T_t^{ik}\right) B^k \mu_t^{ik} C_t^i}{RER_t^k}\right) \Phi_t^{ik}$$

Now we allow Φ_t^{ik} as well as μ_t^{ik} to depend on RER_t^k and $(1+T_t^{ik})$. Rewriting:

$$\exp\left(\ln Q_t^{ik}\right) = Q_t^k d\left(\frac{\exp\left(\ln\left(1 + T_t^{ik}\right)\right) B^k \exp\left(\ln\mu_t^{ik}\right) C_t^i}{\exp\left(\ln RER_t^k\right)}\right) \exp\left(\ln\Phi_t^{ik}\right)$$

So

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln RER_t^k}Q_t^{ik} = Q_t^k d' \left(\frac{P_t^{ik*}}{P_t^{k*}}\right)\Phi_t^{ik}\frac{P_t^{ik*}}{P_t^{k*}} \left(\frac{\partial \ln \mu_t^{ik}}{\partial \ln RER_t^k} - 1\right) + Q_t^{ik}\frac{\partial \ln \Phi_t^{ik}}{\partial \ln RER_t^k}$$

and

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln RER_t^k} = \theta_t^{ik} \left(\frac{\partial \ln \mu_t^{ik}}{\partial \ln RER_t^k} - 1 \right) + \frac{\partial \ln \Phi_t^{ik}}{\partial \ln RER_t^k}$$

Let

$$\eta_{\Phi,RER} = \frac{\partial \ln \Phi_t^{ik}}{\partial \ln RER_t^k}$$

Then we can write

$$\eta_{Q,RER} = \theta_t^{ik} \left(\eta_{\mu,RER} - 1 \right) + \eta_{\Phi,RER}$$

Similarly

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)} Q_t^{ik} = Q_t^k d' \left(\frac{P_t^{ik*}}{P_t^{k*}}\right) \Phi_t^{ik} \frac{P_t^{ik*}}{P_t^{k*}} \left(1 + \frac{\partial \ln \mu_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}\right) + Q_t^{ik} \frac{\partial \ln \Phi_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}$$

SO

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)} = \theta_t^{ik} \left(1 + \frac{\partial \ln \mu_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}\right) + \frac{\partial \ln \Phi_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}$$

Let

$$\eta_{\Phi,1+T} = \frac{\partial \ln \Phi_t^{ik}}{\partial \ln 1 + T_t^{ik}}$$

Then we can write

$$\eta_{Q,1+T} = \theta_t^{ik} \left(1 + \eta_{\mu,1+T} \right) + \eta_{\Phi,1+T}$$

B.3 Iceberg trade costs depend on real exchange rates

As before assume that demand is given by:

$$Q_t^{ik} = Q_t^k d\left(\frac{\left(1 + T_t^{ik}\right) B_t^k \mu_t^{ik} C_t^i}{RER_t^k}\right) \Phi_t^{ik}$$

but now allow the iceberg costs B_t^k to depend on RER_t^k but not $(1+T_t^{ik})$. Rewriting:

$$\exp\left(\ln Q_t^{ik}\right) = Q_t^k d\left(\frac{\exp\left(\ln\left(1 + T_t^{ik}\right)\right) \exp\left(\ln B_t^k\right) \exp\left(\ln \mu_t^{ik}\right) C_t^i}{\exp\left(\ln RER_t^k\right)}\right) \exp\left(\ln \Phi_t^{ik}\right)$$

So

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln RER_t^k}Q_t^{ik} = Q_t^kd'\left(\frac{P_t^{ik*}}{P_t^{k*}}\right)\Phi_t^{ik}\frac{P_t^{ik*}}{P_t^{k*}}\left(\frac{\partial \ln B_t^k}{\partial \ln RER_t^k} + \frac{\partial \ln \mu_t^{ik}}{\partial \ln RER_t^k} - 1\right) + Q_t^{ik}d\frac{\partial \ln \Phi_t^{ik}}{\partial \ln RER_t^k}$$

and

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln RER_t^k} = \theta_t^{ik} \left(\frac{\partial \ln B_t^k}{\partial \ln RER_t^k} + \frac{\partial \ln \mu_t^{ik}}{\partial \ln RER_t^k} - 1 \right) + \frac{\partial \ln \Phi_t^{ik}}{\partial \ln RER_t^k}$$

Let

$$\eta_{B,RER} = \frac{\partial \ln B_t^k}{\partial \ln RER_t^k}$$

Then we can write:

$$\eta_{Q,RER} = \theta_t^{ik} \left(\eta_{B,RER} + \eta_{\mu,RER} - 1 \right) + \eta_{\Phi,RER}$$

B.4 Additive distribution / trade costs

Suppose that there is an additive trade cost B_t^{k*} , expressed in foreign currency:

$$Q_t^{ik} = Q_t^k d \left(\frac{\left(1 + T_t^{ik}\right) \frac{P_t^{ik}}{E_t^k} + B_t^{k*}}{P_t^{k*}} \right) \Phi_t^{ik}$$

Then we can write

$$\exp\left(\ln Q_t^{ik}\right) = Q_t^k d \left(\frac{\exp\left(\ln\left(1 + T_t^{ik}\right)\right) \frac{\exp\left(\ln\mu_t^{ik}\right) C_t^i}{\exp\left(\ln E_t^k\right)} + \exp\left(\ln B_t^{k*}\right)}{P_t^{k*}}\right) \exp\left(\ln\Phi_t^{ik}\right)$$

SO

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln E_t^k} Q_t^{ik} = \frac{Q_t^k d' \left(\frac{\left(1 + T_t^{ik}\right) \frac{P_t^{ik}}{E_t^k} + B_t^{k*}}{P_t^{k*}}\right) \Phi_t^{ik} \left[\frac{\left(1 + T_t^{ik}\right) \frac{P_t^{ik}}{E_t^k}}{P_t^{k*}} \left(\frac{\partial \ln \mu_t^{ik}}{\partial \ln E_t^k} - 1\right) + \frac{B_t^{k*}}{P_t^{k*}} \frac{\partial \ln B_t^{k*}}{\partial \ln E_t^k}\right]}{+Q_t^{ik} \frac{\partial \ln \Phi_t^{ik}}{\partial \ln E_t^k}}$$

and

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln E_t^k} = \theta_t^{ik} \left[\frac{\left(1 + T_t^{ik}\right) \frac{P_t^{ik}}{E_t^k}}{\left(1 + T_t^{ik}\right) \frac{P_t^{ik}}{E_t^k} + B_t^{k*}} \left(\frac{\partial \ln \mu_t^{ik}}{\partial \ln E_t^k} - 1 \right) + \frac{B_t^{k*}}{\left(1 + T_t^{ik}\right) \frac{P_t^{ik}}{E_t^k} + B_t^{k*}} \frac{\partial \ln B_t^{k*}}{\partial \ln E_t^k} \right] + \frac{\partial \ln \Phi_t^{ik}}{\partial \ln E_t^k}$$

Define

$$1 + b_t^{ik} = \frac{\left(1 + T_t^{ik}\right) \frac{P_t^{ik}}{E_t^k} + B_t^{k*}}{\left(1 + T_t^{ik}\right) \frac{P_t^{ik}}{E_t^k}}$$

and we have

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln E_t^k} = \theta_t^{ik} \left[\frac{1}{1 + b_t^{ik}} \left(\frac{\partial \ln \mu_t^{ik}}{\partial \ln E_t^k} - 1 \right) + \frac{b_t^{ik}}{1 + b_t^{ik}} \frac{\partial \ln B_t^{k*}}{\partial \ln E_t^k} \right] + \frac{\partial \ln \Phi_t^{ik}}{\partial \ln E_t^k}$$

Now if B_t^{k*} is fully incurred in the foreign market, $\partial \ln B_t^{k*}/\partial \ln E_t^k = 0$, while if B_t^{k*} is fully incurred in the domestic market, $\partial \ln B_t^{k*}/\partial \ln E_t^k = -1$. If B_t^{k*} is Cobb-Douglas in foreign and domestic components, with weight $\omega_E \in [0,1]$ on the domestic component, we have:

$$\eta_{Q,E} = \frac{\theta_t^{ik}}{1 + b_t^{ik}} \left(\eta_{\mu,E} - 1 - \omega_E b_t^{ik} \right) + \eta_{\Phi,E}$$

Similarly

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)} Q_t^{ik} = Q_t^k d' \left(\frac{\left(1 + T_t^{ik}\right) \frac{P_t^{ik}}{E_t^k} + B_t^{k*}}{P_t^{k*}} \right) \Phi_t^{ik} \left[\frac{\left(1 + T_t^{ik}\right) \frac{P_t^{ik}}{E_t^k}}{P_t^{k*}} \left(1 + \frac{\partial \ln \mu_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)} \right) + \frac{B_t^{k*}}{P_t^{k*}} \frac{\partial \ln B_t^{k*}}{\partial \ln \left(1 + T_t^{ik}\right)} \right] \\ + Q_t^{ik} \frac{\partial \ln \Phi_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}$$

$$\frac{\partial \ln Q_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)} = \theta_t^{ik} \left[\frac{1}{1 + b_t^{ik}} \left(1 + \frac{\partial \ln \mu_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}\right) + \frac{b_t^{ik}}{1 + b_t^{ik}} \frac{\partial \ln B_t^{k*}}{\partial \ln \left(1 + T_t^{ik}\right)} \right] + \frac{\partial \ln \Phi_t^{ik}}{\partial \ln \left(1 + T_t^{ik}\right)}$$

How B_t^{k*} depends on tariffs is a function of whether tariffs are levied on the f.o.b. or c.i.f. value, and whether B_t^{k*} is purely an international shipping cost, or also includes distribution costs inside the export market. Note that while the US levies tariffs on the f.o.b. value, most countries levy them on the c.i.f. value, so B_t^{k*} would be increasing in shipping costs, with an elasticity of 1 if there are no local distribution costs. Allowing $\partial \ln B_t^{k*}/\partial \ln \left(1 + T_t^{ik}\right) = \omega_T \in [0,1]$, we get:

$$\eta_{Q,1+T} = \frac{\theta_t^{ik}}{1 + b_t^{ik}} \left(1 + \eta_{\mu,1+T} + \omega_T b_t^{ik} \right) + \eta_{\Phi,1+T}$$

Combining the expressions for $\eta_{Q,E}$ and $\eta_{Q,1+T}$, we obtain:

$$\frac{\theta_t^{ik}}{1 + b_t^{ik}} = \frac{\eta_{Q,E} - \eta_{\Phi,E}}{\eta_{\mu,E} - 1 - \omega_E b_t^{ik}} = \frac{\eta_{Q,1+T} - \eta_{\Phi,1+T}}{1 + \eta_{\mu,1+T} + \omega_T b_t^{ik}}$$

Setting $\eta_{Q,E}$, $\eta_{\mu,E}$, $\eta_{Q,1+T}$ and $\eta_{\mu,1+T}$ equal to their values in Appendix Table 20 where we split up the real exchange rate into nominal exchange rates and the foreign CPI, and fixing $\eta_{\Phi,E} = \eta_{\Phi,1+T} = 0$ and rearranging, we obtain:

$$b_t^{ik} = \frac{(2.31 * 0.77) - (0.35 * 1.01)}{0.35\omega_T - 2.31\omega_E} = \frac{1.425}{0.35\omega_T - 2.31\omega_E}$$

 b_t^{ik} is minimized when $\omega_E = 0$ and $\omega_T = 1$: this yields $b_t^{ik} = 4.072$. This is the value of b_t^{ik} which can reconcile our estimated elasticities of exports with respect to nominal exchange rates and tariffs. This value of b_t^{ik} implies that more than 80% of the consumer price of imports is accounted for by international shipping costs. This seems too large to be plausible.

Several authors (e.g. Burstein, Neves and Rebelo (2003) and Corsetti and Dedola (2005)) propose distribution costs as a potential explanation for the insensitivity of exports to exchange rates. They model distribution costs by assuming that each unit of a traded good must be bundled with η units of a nontraded good in the destination market in order for consumers to consume. This is equivalent to an additive trade cost where $\omega_E = \omega_T = 0$. So while a high distribution cost share can reconcile a low quantity elasticity with respect to the exchange rate with a price elasticity of demand that is greater than 1, no matter what

the distribution cost share, distribution costs which take this form cannot rationalize the very different elasticities of quantities with respect to exchange rates and tariffs.

C Price elasticity of demand estimates based on delta method

The price elasticity of demand is a nonlinear function of random variables:

$$\theta_t^{ik} = \frac{\eta_{Q_t^{ik},RER_t^k}}{\eta_{\mu_t^{ik},RER_t^k} - 1}$$

and similarly for tariffs. To use the delta method to calculate the mean and standard deviation of θ_t^{ik} , we need to take a stand on the covariance of the two elasticities. We do not estimate this covariance, but based on the fact that the correlation must lie in the range [-1, 1], we can calculate a range of different means and standard deviations. The table below reports the means and standard deviations for correlations equal to $\{-1, 0, 1\}$:

Table 14: Price elasticity of demand using Delta method

$\rho\left(\eta_Q,\eta_P\right)$	-1	0	1
Variation		rer_t^k	
$\mu\left(\theta_{t}^{ik}\right)$	-0.42	-0.42	-0.43
$\sigma\left(heta_t^{ik} ight)$	0.09	0.11	0.13
Variation		$ au_t^{jk}$	
$\mu\left(\theta_{t}^{ik}\right)$	-2.65	-2.98	-3.31
$\sigma\left(heta_t^{ik} ight)$	0.24	1.32	1.85

D Additional quantitative results

D.1 Macro shocks: robustness on ϕ

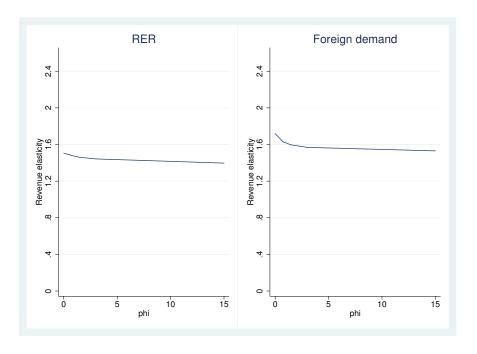


Figure 1: Revenue elasticities and ϕ

Notes: Elasticities are evaluated at baseline values of ρ , α and δ , for case of investment in foreign currency, prices sticky in foreign currency.

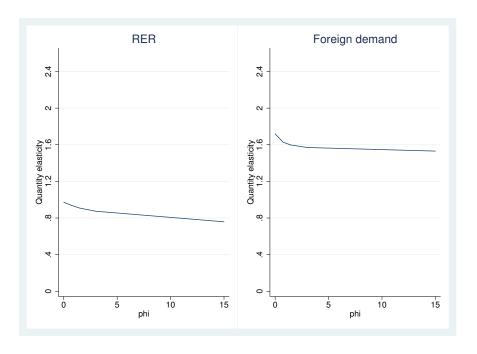


Figure 2: Quantity elasticities and ϕ

Notes: Elasticities are evaluated at baseline values of ρ , α and δ , for case of investment in foreign currency, prices sticky in foreign currency.

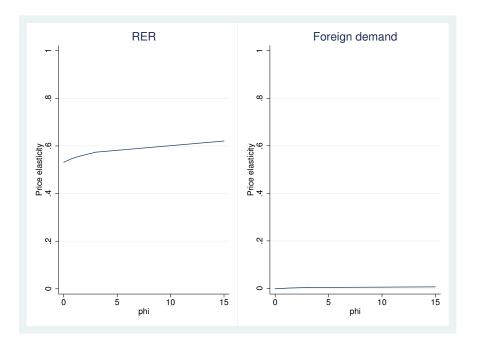


Figure 3: Price elasticities and ϕ

Notes: Elasticities are evaluated at baseline values of ρ , α and δ , for case of investment in foreign currency, prices sticky in foreign currency.

D.2 Macro shocks: robustness on ρ

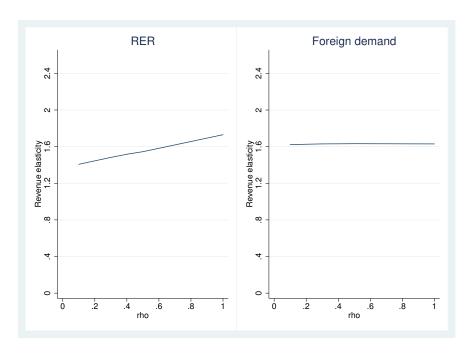


Figure 4: Revenue elasticities and ρ

Notes: Elasticities are evaluated at baseline values of ϕ , α and δ , for case of investment in foreign currency, prices sticky in foreign currency.

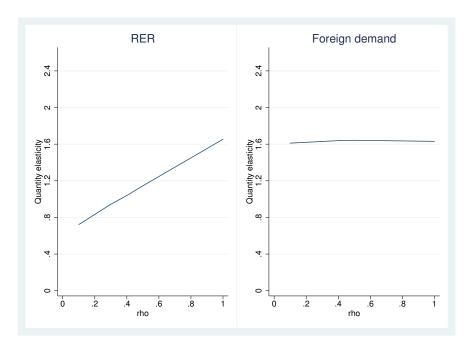


Figure 5: Quantity elasticities and ρ

Notes: Elasticities are evaluated at baseline values of ϕ , α and δ , for case of investment in foreign currency, prices sticky in foreign currency.

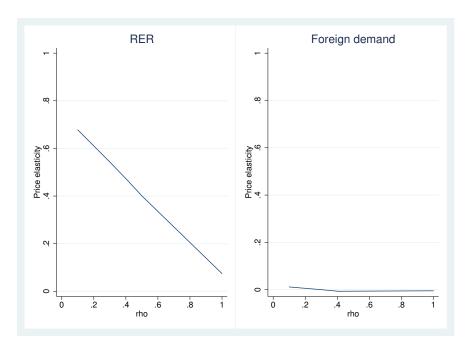


Figure 6: Price elasticities and ρ

Notes: Elasticities are evaluated at baseline values of ϕ , α and δ , for case of investment in foreign currency, prices sticky in foreign currency.

D.3 Macro shocks: robustness on α

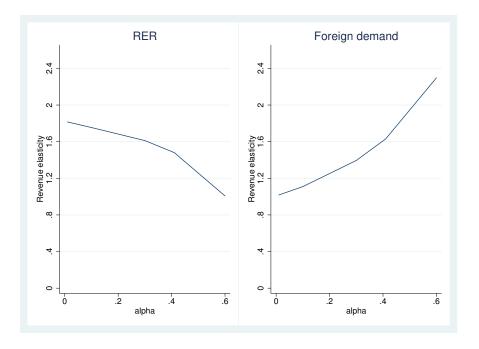


Figure 7: Revenue elasticities and α

Notes: Elasticities are evaluated at baseline values of ϕ , ρ and δ , for case of investment in foreign currency, prices sticky in foreign currency.

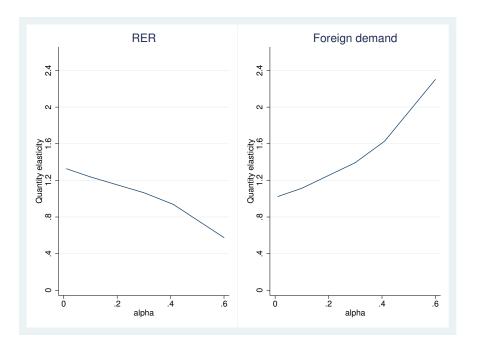


Figure 8: Quantity elasticities and α Notes: Elasticities are evaluated at baseline values of ϕ , ρ and δ , for case of investment in foreign currency, prices sticky in foreign currency.

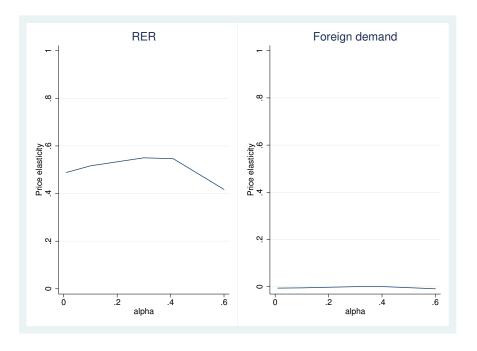


Figure 9: Price elasticities and α Notes: Elasticities are evaluated at baseline values of ϕ , ρ and δ , for case of investment in foreign currency, prices sticky in foreign currency.

Macro shocks: robustness on δ **D.4**

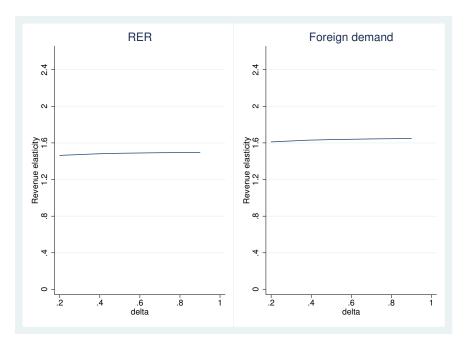


Figure 10: Revenue elasticities and δ Notes: Elasticities are evaluated at baseline values of ϕ , ρ and α , for case of investment in foreign currency, prices sticky in foreign currency.

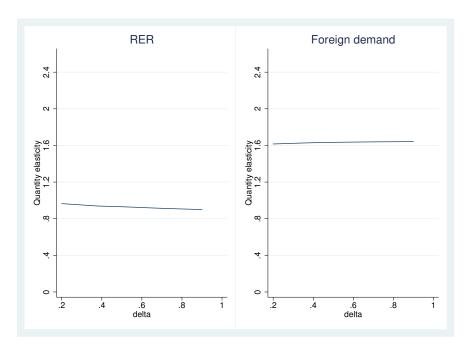


Figure 11: Quantity elasticities and δ Notes: Elasticities are evaluated at baseline values of ϕ , ρ and α , for case of investment in foreign currency, prices sticky in foreign currency.

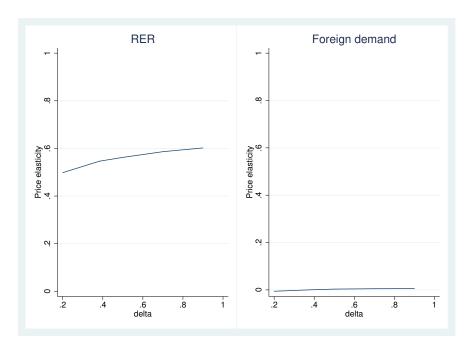


Figure 12: Price elasticities and δ Notes: Elasticities are evaluated at baseline values of ϕ , ρ and α , for case of investment in foreign currency, prices sticky in foreign currency.

Tariff shocks: robustness on ϕ D.5

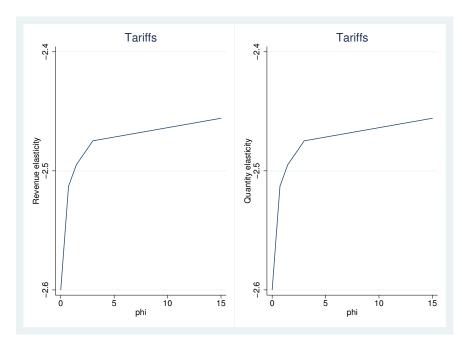


Figure 13: Elasticities with respect to tariffs and ϕ Notes: Elasticities are evaluated at baseline values of δ and α , with flexible prices

D.6 Tariff shocks: robustness on α

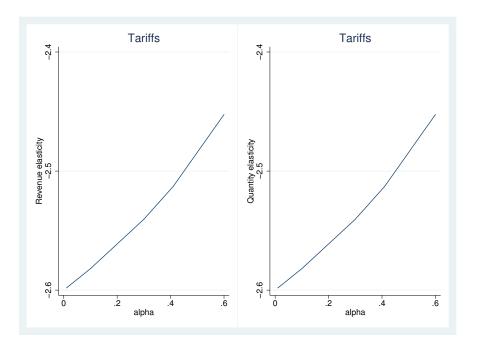


Figure 14: Elasticities with respect to tariffs and α Notes: Elasticities are evaluated at baseline values of ϕ and δ , with flexible prices

D.7 Tariff shocks: robustness on δ

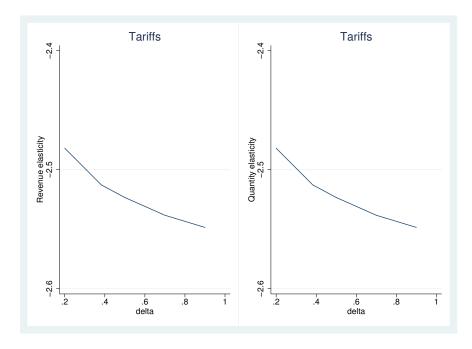


Figure 15: Elasticities with respect to tariffs and δ Notes: Elasticities are evaluated at baseline values of ϕ and α , with flexible prices